We next investigated emissions from the BPL system deployed in the vicinity of the Whitehurst subdivision, where the system is deployed using underground wiring. No BPL signals were detected in this area that would be deemed capable of causing harmful interference to mobile amateur operations.

Finally, we took measurements at two fixed amateur locations, 5813 Heathill Court and 509 Wyndham Drive, included in the complaint. No BPL interference was observed on any amateur frequencies at these two locations. In fact, no BPL signals were observed at these locations on any of the frequencies used for BPL operations by Progress Energy. A third site included in the complaint, at 201 Wilbon Road 301B, was not visited due to a GPS mapping error and subsequent time constraints.

Our conclusions from this investigation are that the Progress Energy BPL trial in the Raleigh area is in compliance with the Commission's rules and that the measures implemented to notch frequencies used by the Amateur Radio Service to avoid the potential for harmful interference are effective. We neither found nor observed any BPL signal levels or effects from the Progress Energy BPL operation that appeared to have the potential to seriously degrade, obstruct or repeatedly interrupt mobile amateur communications or fixed amateur communications at the specified addresses. In a separate action, we are however instructing that Progress Energy and Amperion, its equipment vendor, to slightly widen the notch at the lower edge of the 10 meter band by 100 kHz to ensure protection of amateur operations at 28.0-28.1 MHz.

Sincerely,

Bruce A. Franca
Deputy Chief,
Office of Engineering and Technology

cc: George Dillon, FCC/EB
Riley Hollingsworth, FCC/EB
Len Anthony, Progress Energy Corporation
Matt Oja, Progress Energy Corporation
Bill Godwin, Progress Energy Corporation
David Sumner, President, ARRL
Chris Imlay, Counsel, ARRL

James Burtle

From: Sent: Gary Pearce KN4AQ [kn4aq@arrl.net] Tuesday, October 05, 2004 4:34 PM

To:

Sheryi Wilkerson; Anh Wride; Alan Stillwell; James Burtle

Cc: Riley Hollingsworth; w1rfi@arrl.org

Subject:

"Notching" BPL signals on Amateur Radio/SWL Bands

Greetings, FCC staff,

I have seen several references saying that there is a general feeling at the FCC that notching has been an effective tool for mitigation of BPL signal interference to Amateur Radio.

I have been closely involved in monitoring the recently concluded Progress Energy BPL trial near Raleigh, North Carolina, and I would like to briefly relate my observations that contradict that conclusion.

Progress Energy and their vendor, Amperion, used notching to reduce the BPL signal level on two of the overhead lines involved in their trial. One line had signals crossing the 12 meter band, and the other had signals crossing the 17 meter band.

The notches did indeed reduce the signal level. In his investigation, James Burtle reported that "Measurements and observations with test equipment and a high quality amateur receiver show little field strength or observable signal levels in the notched bands."

My experience was a little different. When I parked my mobile station across the street from the active power line, I could easily hear the BPL signals inside the notched bands. The signals were weak, but they were strong enough to cause harmful interference to other weak Amateur Radio signals, and were annoying to listen to while following the common Amateur Radio practice of tuning across our band looking for signals from other Amateur stations.

A few quick points to add:

- We keep pointing out that there were no Amateur Radio operators living inside the Progress Energy trial area. Our mobile observations were intended to be representative of the fixed stations that will be encountered in a general roll out of the system used in the trial (albeit with the reduced efficiency of mobile antennas).

Extrapolating from our mobile observation, in a general roll out the notched signals would cause harmful interference to fixed stations within a few blocks of the power line. This was demonstrated in practice by Jim Spencer in Cedar Rapids, Iowa, whose home was about 500 feet from the Amperion trial system in that city. After months of trying, Amperion was unable to reduce the signal at his home station below a clearly harmful level. Allient Energy cited the interference as one of the factors that caused them to end the trial early.

- In attempting to move and notch spectrum to mitigate interference, Amperion demonstrated only limited control of their hardware.

In their first change on the overhead line feeding the Holland Meadows subdivision south of Raleigh, they attempted to place a BPL signal across the spectrum that lies between the 20 and 15 meter Amateur bands, with a notch across the 17 meter band. They "missed the mark" at the low end of the spectrum block and ended up with a full-strength signal across the top 60 kHz of the 20 meter band (from 14.290 to 14.350 MHz).

Despite several complaints to Progress Energy and the FCC, this signal remained in place from May until August 2004. When it was finally moved, a few weeks before the system was shut down completely, Amperion's limited control caused them to push the BPL signals up the spectrum and cover the bottom 100 kHz of the 15 meter band with a full-strength signal (while they did clear the top 60 kHz of the 20 meter band).

Mr. Burtle's investigation inexplicably failed to document this signal, even though it was prominently mentioned in the complaint he was responding to (it was still in the 20 meter band when he observed the trial in late June, 2004).

- The Amperion BPL system does not contain itself to the intended spectrum blocks. Rather, signal "spills out" into adjacent spectrum. These overlapping signals are weaker than the main signal, and fade slowly as one tunes across the spectrum away from the edge of the main signal block. I can hear it well for 50 to 100 kHz from the edge of their main blocks, carrying the signals well into the adjacent Amateur Radio bands. The signal level is similar to the notched band signals. Again, the problem will be magnified for fixed stations near the lines. My much less efficient mobile can only demonstrate that the problem exists.
- Absolutely no consideration has been given to interference to international shortwave broadcast (SWBC) reception. I included several specific references to such interference in my complaints (one of which was copied in whole in the complaint filed by Tom Brown N4TAB, investigated by James Burtle I've never received a reply to any of my own complaints). None of the SWBC bands are notched in any way, and weak to moderately strong SW signals are obliterated by the BPL signal when my vehicle is in the vicinity of the power line.

CONCLUSION

Can notching work to adequately mitigate interference to Amateur and Shortwave Broadcast radio? I would have to assume that eventually the BPL equipment manufacturers would be able to design hardware and software that can do the job. The equipment in place today does not.

Sincerely,

Gary Pearce KN4AQ 116 Waterfall Ct. Cary, NC 27513 919-380-9944 kn4ag@arrl.net

> Gary Pearce KN4AQ Cary, NC

editor, SERA Repeater Journal

Cary, NC www.sera.org 919-380-9944 kn4aq@sera.org

kn4aq@arrl.net

AOL/Yahoo Instant Messenger: KN4AQ

(send e-mail to be put on my "buddy list")

Alan Stillwell

From:

James Burtle

Sent:

Wednesday, March 31, 2004 8:10 AM

To:

Alan Scrime; Alan Stillwell; Bruce Franca; Bruce Romano; Anh Wride

Subject:

FW: Complaint of Gary Pearce

----Original Message----

From: Anthony, Len [mailto:len.anthony@pgnmail.com]

Sent: Wednesday, March 31, 2004 7:03 AM

To: James Burtle

Cc: Godwin, Bill; Oja, Matt

Subject: Complaint of Gary Pearce

Bill Godwin, a representative of Progress Energy, has contacted Mr. Pearce and arranged to meet with him and take joint measurements of the interference, or lack thereof, to ham radio transmissions allegedly caused by BPL at the Woodchase and Holland Meadows Subdivisions in Raleigh. Progress Energy believes that the first step in resolving Mr. Pearce's complaint is to reach a common understanding as to the actual measured impact on ham radio operation in these areas. PEC will update you once the measurements have been taken. Len Anthony

TEST REPORT

Certification # 1367-01

,	Laboratory ID PRODUCT SAFETY ENGINEERING, INC.	Submitter ID Main.net Power Line Communications Inc.
	12955 Bellamy Brothers Boulevard	12355 Sunrise Valley Dr.
	Dade City, Florida 33525 USA	Suite 150
	PH (352) 588-2209 FX (352) 588-2544	Reston, VA 20190
	Report Issue Date: 14 Aug 03 Sample S/N: AV PL5/00/0-000 Sample Receipt Date: 14 Jul 03	Test Report Number: 03F332 Model Designation: Nt Plus 3.0 Product Description: Carrier Current Modem (indoor) Marketing Approval
	Sample Test Date: see data sheets	Marketing Approvat
٠	Description of non-standard test method or test prac-	ctice: None
	Estimated Measurement Uncertainty: Not Applica	rble
	Special limitations of use: None	
	Traceability: reference standards of measurement standards traceable to the NIST.	have been calibrated by a competent body using
	According to testing performed at Product Safety Engineering, Inc., the compatibility requirements defined in regulations indicated on page (3 model(4) identified above. It is the manufacturer's responsibility to an identical electrical and mechanical characteristics.	e above-mentioned unit is in compliance with the electromagnetic b) of the test report. The test results contained herein relate only to the stare that additional production units of this model are manufactured with
	As the responsible EMC Project Engineer, I hereby declare that the equal on page (3) of the test apport.	uipment tested as specified above conforms to the requirements indicated
	Signature Ware Tourish N	ame David Foerstner
	Title Engineering Group Leader D	ate 14AUG-63
	Reviewed by: Approved Signatory	Wipate 14 Aug \$3
	The second in Sell with the	written permission from Product Safety Engineering, Inc.

its tehen may amy an observation

Test Report Number 03F332

Product Safety Engineering, Inc. 12955 Beliamy Brothers Bivd. Dade City, FL 33525 Tel (352) 588-2209 Fax (352) 588-2544

DIRECTORY - EMISSIONS

A)	Documentation		
	Test report Directory Test Regulations General Remarks Test-setups (Photos)		1 - 10 2 3 10 11 - 12
B)	Test data		
	Conducted emissions Radiated emissions Radiated emissions Interference power Equivalent Radiated emissions Antenna Disturbance Voltage	10/150 kHz - 30 MHz 10 kHz - 30 MHz 30 MHz - 1000 MHz 30 MHz - 300 MHz 1 GHz - 18 GHz 30 MHz - 1,000 MHz	5, 9 5, 9 6, 9 6, 9 7, 9 7,9
C)	Appendix A		
	Test Equipment Calibration Information Test Data Sheets		A2 A3 - A17
D)	Appendix B		
	System Under Test Description		B2 - B4

EMISSIONS TEST REGULATIONS:

The emissions tests were performed according to following regulations:

- EN 50081-1 : 1992

□ - EN 50081-2 : 1995

- EN 65011 : 1998 / A1:1999

□ - Group 1

D - Group 2

- Class A

a - Class B

B - EN 55013: 1990 / A12:1994 / A13:1996 / A14:1999

a - EN 55014 : 1993 /A1:1997

□ - Household appliances and similar

a - Portable tools

□ - Semiconductor devices

□ - EN 55022 : 1998

- Class A

□ - Class B

-AS/NZS 3548:1995

□ - Class A

- Class B

□ - ICES-003

- Class A

- Class B

- CNS 13438

D - Class A

□ - Class B

D - VCCI : 1999

- Class A

🗆 - Class B

■ - FCC Part 15

- Class A

- Class B

O - Certification

- Verification (Carrier Current Device Only)

□ - Declaration of Conformity

- FCC Part 18

Environmental conditions d	uring testing:					
		LAB	OATS			
Temperature: *	· -		:	-		
Relative Humidity: **	-		:	_		
* The ambient temperature during the test that the test test test test test test test	he testing was within t sting was within the ra	he range of nge of (10%	f (50° - 104° F) 6 - 90%) relativ	unless indicted ve humidity unle	l above. ess indicated	above.
Power supply system	:110	Volts	<u>60</u> Hz	SINGLE	_ phase	
Sign Explanations:						
□ - not applicable ■ - applicable						

Emissions Test Conditions: CONDUCTED EMISSIONS (Interference Voltage)

The CONDUCTED EMISSIONS (INTERFERENCE VOLTAGE) measurements were performed at the following test location:

- Test not applicable

- a Darby Test Site (Open Area Test Site)
- Derby Laboratory

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
B -	8028-50	Solar	50 Ω LISN	829012, 82 9022
D -	3825/2	Solar	50 Ω LISN	924840
= -	EMC-30	Electro-Metrics	EM) Receiver	191
-	8566B	Hewlett-Packard	Spectrum Analyzer	2421A00526
٥-	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
0 -	85662A	Hewiett Packard	Analyzer Display	2403A07352
-	8028-50	Solar	50 Ω LISN	903725, 903726
٥-	FCC-TLISN-T4	Fisher Custom Com.	Telecom ISN	20072

Emissions Test Conditions: RADIATED EMISSIONS (Magnetic Field)

The RADIATED EMISSIONS (MAGNETIC FIELD) measurements were performed at the following test location:

- D Darby Test Site (Open Area Test Site)
- - (3) Typical residential locations
- D -

at a test distance of:

- 3 meters
- - 10 meters

- Test not applicable

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
۵-	96005	Eaton	Log Periodic Antenna	1099
-	BIA-25	Electro-Metrics	Biconical Antenna	4283
_	E7402A	Agilent	Spectrum Analyzer	US40240204
	85662A	Hewlett-Packard	Analyzer Display	2403A07352
	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
	ALR-30M	Electro-Metrics	Loop Antenna	824
	8447D	Hewlett Packard	Preamplifier	2944A06832
a -	EMC-30	Electro-Metrics	EMI Receiver	191
	ALA-130/A	Antenna Research	Loop Antenna	106

The RADIATED EMISSIONS (ELECTRIC FIELD) measurements, in the frequency range of 30 MHz-500 MHz, were tested in a horizontal and vertical polarization at the following test location:

Test not applicable

- □ Darby Site (Open Area Test Site)
- a Darby Lab
- = (3) Typical residential installations

at a test distance of :

- - 3 meters
- □ 10 meters
- a 30 meters

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
B -	96005	Eaton	Log Periodic Antenna	1099
T -	BIA-25	Electro-Metrics	Biconical Antenna	4283
.	E7402A	Agilent	Spectrum Analyzer	US40240204
-	85662A	Hewlett-Packard	Analyzer Display	2403A07352
-	85650A	Hewlett-Packard	Quasi-Peak Adapter	2043A00209
-	8447D	Hewlett-Packard	Preamplifier (26dB)	2944A06832
B -	EMC-30	Electro-Metrics	EMI Receiver	191
-	8568B	Hewiett Packard	Spectrum Analyzer	2407A03213
-	85650A	Hewlett Packard	Quasi-Peak Adapter	2043A00358
a -	85662A	Hewlett Packard	Analyzer Display	2340A05806
-	LPA30	Electro-Metrics	Log Periodic	2280
-	BIA 30	Electro-Metrics	Biconical Antenna	3852

Emissions Test Conditions): INTERFERENCE POWER

The INTERFERENCE POWER measurements were performed by using the absorbing clamp on the mains and interface cables in the frequency range 30 MHz - 300 MHz at the following test location:

- Test not applicable

- Darby Lab

О.

Test equipment used:

	Model Number	Manufacturer	Description	Serial Number
u -	MDS-21	Rhode&Schwarz	Absorbing Clamp	8608447020
-	8566B	Hewiett-Packard	Spectrum Analyzer	2421A00526
-	85662A	Hewlett-Packard	Analyzer Display	2403A07 3 52
-	85650A	Hewiett-Packard	Quasi-Peak Adapter	2043A00209
-	8447D	Hewlett-Packard	Amplifier (26 dB)	2944A06832
α,-	EMC-30	Electro-Metrics	EMI Receiver	191

The Equivalent Radiated Emissions measurements in the frequency range GHz - GHz were performed in a horizontal and vertical polarization at the following test location :

□ - Darby Test Site (Open Area Test Site)

-

-

-

at a test distance of:

□ - 1 meters

u - 3 meters

□ - 10 meters

- Test not applicable

Test equipment used:

Description Serial Number **Model Number** Manufacturer **Hewlett-Packard** Spectrum Analyzer 2421A00526 8566B Analyzer Display 2403A07352 85662A Hewlett-Packard Quasi-Peak Adapter 2043A00209 85850A Hewlett-Packard Preamplifier 3008A00320 Hewlett-Packard a - 8449B Double Ridge Guide Hom 3810 Electro-Mechanics **u** - 3115

The Antenna Terminal Disturbance Voltage in the frequency range 30 MHz - 1,000 MHz were performed.

□ - Darby Test Site (Open Area Test Site)

- Laboratory

-

-

- Test not applicable

	Model Number	Manufacturer	Description	Serial Number
-	2F9-3C4-3C5	Wavecom	UHF PAL TV Modulator	185879
	2F1-3C4-3C5	Wavecom	VHF PAL TV Modulator	157728
-	A-8000	IFR	Spectrum Analyzer	1306
-	8648B	Hewlett-Packard	Signal Generator	3623A01433
n -	8648B	Hewlett-Packard	Signal Generator	3623A01477
n -	LMV-182A	Leader	RMS Milli-Voltmeter	8010091
-	3202	Krhon-Hite	Active filter	5899
0-	FMT115	Leaming	FM Modulator	NONE
D -	371	UDT	Optical power meter	06657
	TSG95	Tektronix	PAL video / Audio generator	B028883
т.			•	

ests :
missions testing:
•
of the homes chosen were served by per the request of the FCC.
, p

Emission Test Results:

Conducted emissions 10/150/450 kHz	z - 30 MHz			
The requirements are	■ - MET	-	NOT MET	
Minimum limit margin Remarks:	15 dB	at	1.69 MHz	
Radiated emissions (magnetic field)	10 kHz - 30 MHz			
The requirements are	- MET	□	NOT MET	
Minimum limit margin Remarks:	0.2 dB	at	14.9 MHz	
Radiated emissions (electric field) 3 The requirements are Minimum limit margin Remarks: No emissions were observe	■-MET >10 dB	at	NOT MET MHz function of the	
transmitter. Interference Power at the mains and The requirements are	d interface cables 30 MHz - 30	0 MHz □ -	NOT MET	
Minimum limit margin Remarks:	dB	at	MHz	
Radiated emissions GHz -	GHz			
The requirements are	□ - MIET	φ.	NOT MET	
Minimum limit margin Remarks:	dB	at	GHz	
Antenna Terminal Disturbance Vo	ltage 30 MHz - 1,000 MHz			
The requirements are	□ - MET	Q.	- NOT MET	
Minimum limit margin Remarks:	dB	at	MHz	

GENERAL REMARKS:

The test equipment utilized during the radiated emissions testing consisted of a spectrum analyzer (EMC Analyzer) which was powered via a (12) volt "DC" marine deep cycle battery. The analyzer and battery were strapped to a handcart for ease in movement. The analyzer was connected to each antenna via a (50) foot coaxial cable. The analyzer was programmed to correct the raw readings to compensate for cable loss and antenna factors.

The FCC states the limits for the radiated emissions made at frequencies between (1.705 - 30) MHz at a (30) meter distance. We used (40) dB per decade as the extrapolation factor to adjust the limit from a (30) meter distance to a (10) meter distance as allowed in Part 15.31(f)(2). The limit for radiated emissions below (30) MHz, extrapolated to a (10) meter distance, is (48.6) dBuV/m.

The radiated data collected is reported while using each a peak, quasi-peak and average detector for information purposes only. The limit is compared to the quasi-peak data only. No emissions were observed between (1.705 -4) MHz.

We made measurements at each azimuth at each house in both horizontal and vertical polarites between (30 - 500) MHz. The only required measurements for conducted emissions are between (0.535 - 1.705) MHz and are included in the test report. NOTE: The power level was set to (5) during all of the testing.

SUMMARY:

The requirements according to the technical re	gulations	arc
--	-----------	-----

- met

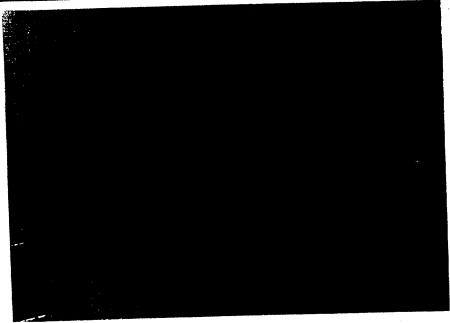
- not met.

The device under test does

Testing End Date:

fulfill the general approval requirements mentioned on page 3.

- not fulfill the general approval requirements mentioned on page 3.


Testing Start Date 07/14/2003


- PRODUCT SAFETY ENGINEERING INC -

Test Report Number 03F332

07/23/2003

Test-setup photo(s):
Conducted emission 450/150 kHz - 30 MHz

Test Report Number 03F332

Test-setup photo(s):
Radiated emission 30 MHz - 1000 MHz

SEE APPENDIX A

APPENDIX

A

Test Equipment Calibration Information

&

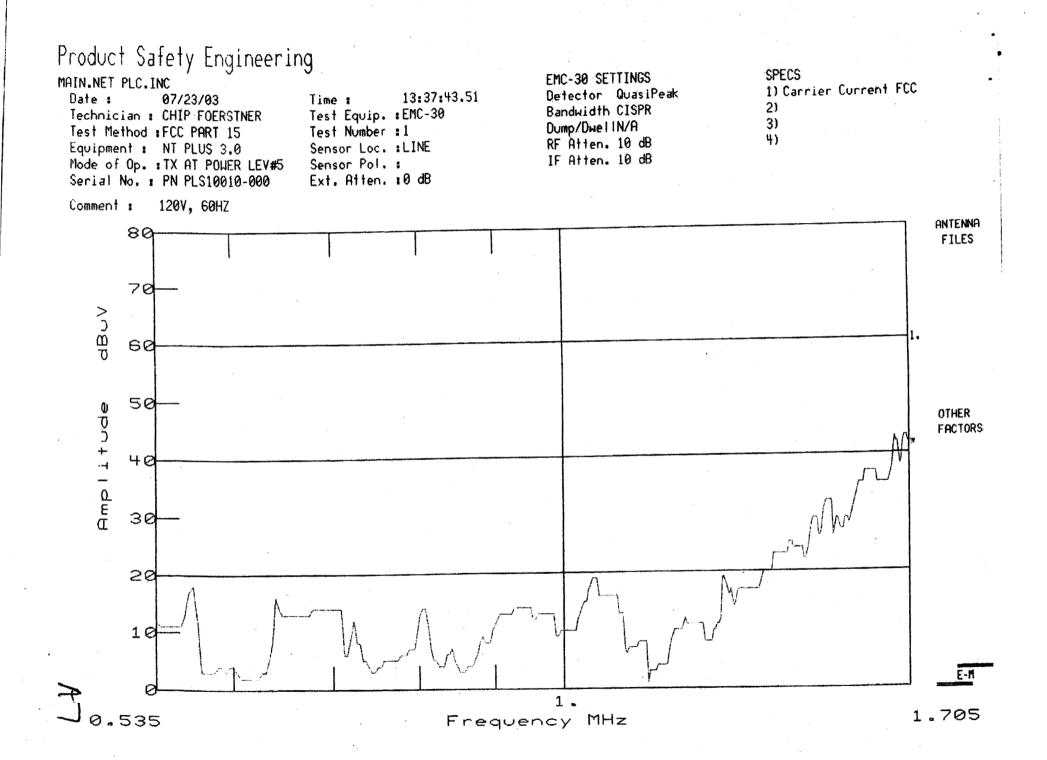
Test Data Sheets

TEST EQUIPMENT CALIBRATION INFORMATION

Manufacturer	Model	Description	Serial Number	Cal Due
Hewlett Packard	8566B	Spectrum Analyzer	2421A00526	08/14/04
Hewlett Packard	85662A	Display	2403A07352	08/14/04
Hewlett Packard	85650A	Quasi-Peak Adapter	2043A00209	08/14/04
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06832	11/13/03
Hewlett Packard	8568B	Spectrum Analyzer	2407A03213	08/14/04
Hewlett Packard	85682A	Display	2340A05806	08/14/04
Hewlett Packard	85650A	Quasi-Peak Adapter	2043A00358	08/14/04
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	2944A06901	06/02/03
Hewlett Packard	8447D	Preamp 0.1 - 1,000 MHz	1937A03247	07/17/04
Hewiett Packard	8449B	Preamp 1 - 26.5 GHz	3008A00320	11/08/03
Hewlett Packard	8648B	Signal Generator	3443U00312	04/24/04
Hewlett Packard	8672A	Signal Generator	2211A02426	11/14/03
Eaton	96005	Log Periodic Antenna	1099	01/24/04
Electro-Metrics	LPA 30	Log Periodic Antenna	2280	12/06/03
Electro-Metrics	BIA 30	Biconical Antenna	3852	12/05/03
Electro-Metrics	BIA 25	Biconical Antenna	4283	01/22/04
Electro-Mechanics	3115	Double Ridge Guide Ant.	3810	11/07/03
Electro-Metrics	ALR30M	Magnetic Loop Antenna	824	12/12/03
Solar	8012	LISN	924840	12/29/03
Solar	8028	LISN	829012/809022	12/19/03
Solar	8028	LISN	903725/903726	11/18/03
Schwartzbeck	MDS-21	Absorbing Clamp	02581	09/13/03
Leader	LFG1310	Function Generator	8060233	04/24/04
IFR Systems	A-8000	Spectrum Analyzer	1306	11/13/03
Electro-Metrics	EMC-30	EMI Receiver	191	04/24/04
Antenna Research	ALA-130/A	Loop Antenna	106	03/14/04
Radio Shack	63- 86 7	Temp/Hygrometer	N/A	04/18/04
Radio Shack	63-867A	Temp/Hygrometer	N/A	04/28/04

Emissions Data

			House #1	 1	T	T 1			House #2						House #3		
			LIA DOING			1								- E	Peak	QP	AVG
muth	_	Freq	Peak	QP	AVG	Azimutt		Freg	Peak	QP	AVG	Azimutt	-	Freq MHz	dBuV/m	BuV /m	dBuV/m
		MHz	dBuV/m	dBuV/m	dBuV/m			MHz	dBuV/m	dBuV/m	dBuV/m	├ ·		MILIE	DOM AVIII		
												1	\vdash				
1						1			20 1	42.5	27.1	 	1	5.0	49.1	42.3	27.3
	1	4.5	46.1	37.0	26.0		1	5.0	48.1 52.6	45.0	26.4	1	2	9.2	52.0	46.6	27.9
	2	9.0	44.1	37.7	24.9		2	8.8 12.3	51.4	44.4	26.4	1	3	11.5	58.0	48.3	26.8
	3	11.7	50.0	41.3	34.3		3	14.2	49.2	43.6	21.8	1	4	12,0	50.3	46.0	26.6
	4	12.3	48.8	41.3	25.3		4	15.0	49.3	41.5	26.0		5 6	13.2	44.8	37.0	23.8
	5	15.5	33.4	27.7	24.2		5	17.0	45.1	40.8	20.8		B	14.5	40.3	33.2	20.1
	6	17.2	47.0	42.5	20.9		├ ⁸	17.0					. —				
	-				ļļ.	2						2				40.3	28.2
2					06.4	 	1	8.8	51,3	44.2	26.2		1	5.0	51.9	46.3	25.6 25.6
	1	4.5	47.3		26.1		2	8.9	49.9	44.8	26.1		2	11.1	50.3	43.0	27.6
	2	8,8	44.8	37.5			3	12.8	46.5	39.3	22.3		3	12.2	46.4	38.8	23.9
	3	12.3	50.2		25.7		4	14.1	50.1		21.4		4	15.0	50.3	41.0	22.2
	4	15.9	40.1	36.2	19.0	 	5	14.7	46.1		20.0	<u> </u>	5	17.0	48,4	44.1	
	5			<u> </u>	├───		1			i		<u> </u>					
	-			 	 					1		LI	↓			 	
3	-+				 	—— <u>;</u>						3			51.5	44.9	28.0
—==	7	4.5	48.8	44.6	27.4		1	4.5	44.6	40.4		 	1		51.2		25.8
	2	8.5	44.4						47.5]]	2		43.9		20.
	3	11.3	46,3			 ~	23	12.1	42.6	36.6	25.1	 	3		49.5	42.0	
٠	4	13.0	41.1				4	14.1	48.8	42.6	21.3	<u> </u>	4		47.2		
	5	15.8	43.8			·	1				<u></u>		5	17.0	41.2		
	6	17.0	47.9			4.					<u> </u>	 	↓_		}	 	
	-	17.0	71.3	70.00	1		1		I	<u> </u>	<u> </u>	H		<u> </u>]	 	
4	· · /	****		 	 	4			Ĺ	<u> </u>	<u> </u>	1 4		5.0	52.5	45.2	27.
	1	4.5	47.3	43.2	27.2		1		40.0			₩	1 1		43.9		24.
	2	9.2	50.4				2	15.1	40.4				3		49.0		26.
	3	12.3	45.8				3					₩	+3		45.1		26. 19.
	4	13.2	39.2				4	4.2	45.7	40.5	26.5	₩	1 5		46.6		20.
	5			+							<u> </u>	 	+*	14.5		+	
	6			 			T_{-}		<u> </u>	<u> </u>		₩	+-	 		 	
	T1						T		1		1	 		 			 -
5			1	 	† 			L					_	5.0	52.3	45.8	28.
	1	17.0	47.9	9 41.2	20.7		11				28.2		$-\frac{1}{2}$				24.
	2	16.0					3	7.0				4			47.0		25.
	3	12.0	44.0		24.5						27.2		3		46.0		
	4	4.5	45.0			\Box	14					11	1				18
	5			1			5	12.6	40.9	36.9	43.3		1.8	10.0	 	1	†
	8			1	1		6	20.0	43.0	38.0	19.5	' 		 		 	1
								1			 	┼┼ ─┈~ ₂	H	.	 	+	1
6		**********	L				1				1-22		3 1	5.1	48.4	42.8	27.
	1	4.8			20.7	Ш	11					++	+ 2				
	2	9.3	47.	2 39,			. 2						+:				
	3	12.2	45.	3 38.1	25.3	Ш	3										
	4						14						1.1				
	5						15	11.0	53.		28.4 2 27.4		1.6	10.0	30.4	944-1	
	6		4				1 6	4.7	51.	1 44.3	41.4	4		+		+	


manufactured to the state of th

2 2 2 2 2 2 2 2 3 2 2 2 3	27.4 25.0 19.8 19.8	27.8 25.3 19.0 19.1	28.9 27.1 27.1 18.6 1.0	28.6 22.9 22.9 22.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
39.7 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	43.0 42.9 38.6 38.6	45.5 40.2 34.1 36.3	48.2 45.6 41.6 36.8	47.9 46.1 45.9 45.9	0.14.1.8.1.1.8.1.0.1.1.1.1.1.1.1.1.1.1.1.1.1
45.2 46.7 46.7 46.7	49.5 45.2 45.4 45.4	49.1 40.7 40.2 40.2	1.8 7.8 4 1.8 7.8 5.	53.74 5.00 5.00 6.00 6.00	2 2 2 2 2
5.0 11.0 13.5 13.5	4.9 13.5 17.0	11.0	12.0 12.0 12.0 16.0 16.0 16.0	11.3	0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-2646	- M 84 W	- CI 60 4	- 2 m 4 m	± 0 0 4 0	- CA (W) 4 (W)
25.7.1 2.25.7 2.	28.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	24.8 28.0 30.0 31.4	15 15 15 15 15 15 15 15 15 15 15 15 15 1	22.0 24.4 16.7	27.73.88 27.73.89 27.79.89 27.79.89 27.79.89 27.79.89
46.2	43.1 48.3 47.8 47.0 48.6	43.8 46.8 46.8 43.8	44.6 44.7 48.5 47.9 45.6	8.24.24.2 8.00.00.4.2.2 7.00.00.00.00.00.00.00.00.00.00.00.00.00	1
46.5 45.3 50.5 44.4 51.4 44.4 44.4 44.4	52.2 52.3 53.1 53.1 53.1 54.4	25.1.2.00 25.1.2.2.00 25.1.3.2.00	00 00 00 00 00 00 00 00 00 00 00 00 00	52.00 50.4 50.6 4.8	52.0 52.0 52.1 52.2 52.1 52.2 52.1
	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	11.0 9.0 9.0 1.4 1.0 1.4	4 2 2 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	14.3 14.3 20.2 20.2 20.2	24 4 6 6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
14.2	40040	- 00 4 W	1-26460	-26400	╽╸╽ ╍╂╍╂╍╂ ╍╏╺╏
	ω	9	0	=	10 mm m
18.3	25.5 19.0 18.9	27.4 27.8 25.3			23.27.27.27.27.27.27.27.27.27.27.27.27.27.
2 % K	X X X X X X X X X X X X X X X X X X X	47.4 48.4 38.8			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
42.4	42.8	\$1.9 40.6 42.7			41.9
11.2	11.3	4 & CT	No Data No Data No Data No Data No Data No Data	No Data No Data No Data No Data No Data	No Deta 9.0
-26.4	1	B		=	121 - 2.50 4 50 9

		1												γ			
		 				+	1-						├-				
	_				 		 -						┝				
					}	+	┼-					 	┥				
13					 	13	1-					13	┝	 		-	
	1	4.5	50.2	42.3	26.8	 "	+	No Data					1	4.9	48.0	41.6	26.8
	2	9.0	46.8	35.7	25.8		┼~	No Date				1	7		52.4	47.1	26.8 29.2 26.0 26. 7
	3	18.0	39.3	31.2	17.8		+-	No Data					3		49.8	44.0	26.0
	4		50.0				1-	No Data					4	12.0	51.1	46.3	26.7
	5				 	-+	+-	No Date					5		53.8	46.0	22,6
	6				1		+-	No Data					6		51.6	44.8	22,6 23.4
			-		+	+	\vdash	1				1	<u> </u>				
14						14	1					14					
	1	4.5	54.9	46.5	27.9		Τï	15.0	52.0	44.5	26.6		1	5.1	52.6	46.8	28.1
	$-\frac{2}{3}$	9.0	49.5	40.8	25.5		2		47.6	41.8	22.0		2	11.2	54.2	47.5	26.7 25.7
	3	14.1	38.5	32.5	18.7		3	12.0	48.4	43.8	26.4		3	12.0	52.9	44.2	25.7
	4	16.9	41.9	36,4	19.4		4	10.1	47.0	41.1	25.9		4	15.0	54.0	44.9	22.5
	5	18.0	42.9	34.0	18.4		5	6.3	52.6	45.0	26.4		5		52.1	47.8	23.5
	6			.,	1		6		51.7	45.5	27.8		_				
							╅										
15					T	15	1-					15					
	1	4.5	46.2	42.0	27.0		1	14.8	49.8	46.6	22.2		1	5.1	53.8	47.8	28.8
	2	9.0	47.3	41.5	25.6	-	2		47.2	42.6	21.5		2		50.6	44.0	28.1
	3					-	3		48.2	41.4	25.2		3	11.0	53.5	47.0	28.1 27.0
	4				1	1	14		48.5	41.3	25.3		4	12.9	49.8	42.1	21.7
	5				1	1	5		51.3	43.8	25.9		5	15.0	53.4	47.8	25.7
	6						<u> </u>					1	6		54.0	46.6	21.7 25.7 22.7
	_					1											
16						16	1					16					
	1	4.4	44.1	35.9	26.1	1	11	14.9	52.7	47.9	23.6			No Data			
	2	8.8	47.2	41.3	25.5		2		45.9	41.8	25.4			No Data			
	3	16.0	44.2	38.1	18.9	T	3	10.9	48.2	42.3	25.6			No Data			
	4	18.0	38.9	32.0	17.8		4	7.0	50.8	44.4	26.2			No Data			
	5					T	5	6.2	51.6	45.6	26.9			No Data			
	8						6		50.3	44.7	27.5			No Data			

Re

.

TEST TITLE:MAIN.NET PLC.INC
DATA FILE :332_L.D30
Amplitude Units : dBuV

Threshold -20 dB

PAGE 1 Freq.(MHs) 0.5350

	Freq(MHz)	Amp	CARRIER.S30 vs Spec(dB)
	1.6642 1.6675 1.6709 1.6743 1.6776 1.6877 1.6911 1.6945	41.0 43.0 42.0 42.0 40.0 42.0 43.0 43.0	-19.000 * -17.000 * -18.000 * -18.000 * -20.000 * -18.000 * -17.000 * -17.000 * -17.000 *
1	1.7012 1.7046 1.7050	42.0 42.0 42.0	-18.000 * -18.000 * -18.000 *

Product Safety Engineering SPECS MAIN.NET PLC.INC EMC-30 SETTINGS 1) Carrier Current FCC Detector QuasiPeak Date : 07/23/03 13:34:53.68 Time : Bandwidth CISPR Technician : CHIP FOERSTNER Test Equip. : EMC-30 3) Dump/Dire LIN/A Test Method : FCC PART 15 Test Number :1 4) RF Atten. 10 dB Sensor Loc. : NEUTRAL Equipment: NT PLUS 3.0 IF Atten. 10 dB Mode of Op. :TX AT POWER LEV#5 Sensor Pol.: Serial No.: PN PLS10010-000 Ext. Atten. :0 dB Comment : 120V, 60HZ ANTENNA 80 FILES 70 dB.V 60 50 Amplitude OTHER FACTORS 40 36 20 10 1. 0.535 1.705 Frequency MHz